4G

LTE

Long Term Evolution

LTE - Long Term Evolution

LTE (Long Term Evolution) is the first 4G mobile technology standardized by 3GPP. It was defined in Rel-8 (2008) and extended in Rel-9 (2009).

Key Features

LTE revolutionized mobile networks with:

  • All-IP architecture - no circuit-switched elements
  • OFDMA modulation in downlink
  • Flat architecture - fewer network nodes than 3G
  • Low latency - under 10ms RTT

Network Architecture

Core Network - Evolved Packet Core (EPC)

EPC is the LTE core network, fully based on IP protocol. It replaced the hierarchical 3G architecture (SGSN/GGSN).

EPC Components

Component Full Name Function
MME Mobility Management Entity Signaling, authentication, UE location tracking, S-GW/P-GW selection
S-GW Serving Gateway User data, anchor for inter-eNB handover
P-GW PDN Gateway IP address allocation, QoS, external network connectivity
HSS Home Subscriber Server Subscriber database, authentication data
PCRF Policy and Charging Rules Function QoS policies, charging rules

๐Ÿ“‹ Specifications: TS 23.401 (EPC Architecture), TS 23.402 (Non-3GPP Access)


RAN - E-UTRAN

E-UTRAN (Evolved UTRAN) is the LTE radio access network.

Components

Component Description
eNodeB Evolved NodeB - LTE base station, includes RNC functions from 3G
X2 interface Interface between eNodeBs for handover
S1 interface eNodeB โ†” EPC interface (S1-MME for signaling, S1-U for data)

๐Ÿ“‹ Specifications: TS 36.300 (E-UTRAN Overall), TS 36.331 (RRC), TS 36.413 (S1AP), TS 36.423 (X2AP)


Physical Layer

LTE uses advanced modulation techniques for high spectral efficiency.

Orthogonal Frequency Division Multiple Access

  • Band division into orthogonal subcarriers (15 kHz)
  • Resource Block: 12 subcarriers ร— 0.5ms = 180 kHz ร— 0.5ms
  • Resistance to multipath fading
  • Flexible resource allocation

Single Carrier FDMA

  • Lower PAPR (Peak-to-Average Power Ratio) than OFDMA
  • Better for battery-powered devices
  • DFT-precoded OFDMA

MIMO

Multiple Input Multiple Output

  • Rel-8: 2ร—2, 4ร—4 MIMO
  • Spatial multiplexing for higher throughput
  • Transmit diversity for better coverage

Parameters

Parameter Value
Bandwidth 1.4, 3, 5, 10, 15, 20 MHz
Max throughput DL 150 Mbps (Cat 4), 300 Mbps (Cat 5)
Max throughput UL 50 Mbps (Cat 4), 75 Mbps (Cat 5)
Latency < 10ms (user plane)
Modulation QPSK, 16QAM, 64QAM

๐Ÿ“‹ Specifications: TS 36.211 (Physical Channels), TS 36.212 (Multiplexing), TS 36.213 (Physical Layer Procedures)


Frequency Bands

LTE operates in various frequency bands worldwide. Bands are designated by numbers (B1, B3, etc.) and operate in either FDD (paired spectrum) or TDD (unpaired spectrum) mode.

Common FDD Bands

Band Uplink (MHz) Downlink (MHz) Bandwidth Primary Region
B1 1920-1980 2110-2170 60 MHz Global
B3 1710-1785 1805-1880 75 MHz Europe, APAC
B7 2500-2570 2620-2690 70 MHz Europe, LATAM
B8 880-915 925-960 35 MHz Europe, APAC
B20 832-862 791-821 30 MHz Europe (Digital Dividend)
B28 703-748 758-803 45 MHz APAC, LATAM

Common TDD Bands

Band Frequency (MHz) Bandwidth Primary Region
B38 2570-2620 50 MHz Europe, APAC
B40 2300-2400 100 MHz China, India
B41 2496-2690 194 MHz USA, China
B42 3400-3600 200 MHz Europe
B43 3600-3800 200 MHz Europe

FDD vs TDD

Aspect FDD TDD
Spectrum Paired (separate UL/DL) Unpaired (shared)
Guard Frequency guard band Time guard period
Latency Lower (simultaneous TX/RX) Higher (switching)
Flexibility Fixed UL/DL ratio Configurable ratio
Use case Voice, symmetric data Asymmetric data (more DL)

๐Ÿ“‹ Specifications: TS 36.101 (UE Radio Transmission), TS 36.104 (BS Radio Transmission)


UE Categories

UE (User Equipment) categories define device capabilities including maximum data rates, MIMO support, and modulation schemes.

Rel-8/9 Categories

Category Max DL Max UL DL MIMO Modulation
Cat 1 10 Mbps 5 Mbps 1ร—1 64QAM DL, 16QAM UL
Cat 2 50 Mbps 25 Mbps 2ร—2 64QAM DL, 16QAM UL
Cat 3 100 Mbps 50 Mbps 2ร—2 64QAM DL, 16QAM UL
Cat 4 150 Mbps 50 Mbps 2ร—2 64QAM DL, 16QAM UL
Cat 5 300 Mbps 75 Mbps 4ร—4 64QAM DL, 64QAM UL

LTE-Advanced Categories (Rel-10+)

Category Max DL Max UL Features Introduced
Cat 6 300 Mbps 50 Mbps 2CC CA, 2ร—2 MIMO Rel-10
Cat 9 450 Mbps 50 Mbps 3CC CA, 2ร—2 MIMO Rel-11
Cat 12 600 Mbps 100 Mbps 3CC CA, 4ร—4 MIMO Rel-12
Cat 16 1 Gbps 150 Mbps 4CC CA, 4ร—4 MIMO Rel-12

IoT Categories (Rel-13+)

Category Max DL Max UL Features Use Case
Cat M1 1 Mbps 1 Mbps Half-duplex, PSM Smart meters, wearables
Cat M2 4 Mbps 7 Mbps VoLTE capable Industrial IoT
Cat NB1 26 kbps 66 kbps Ultra-low power Sensors, trackers
Cat NB2 127 kbps 159 kbps Positioning Asset tracking

๐Ÿ“‹ Specifications: TS 36.306 (UE Radio Access Capabilities)


Services

QoS (Quality of Service)

LTE introduced bearer-based QoS:

  • Default Bearer - always active, best effort
  • Dedicated Bearer - for services with guaranteed QoS
  • QCI (QoS Class Identifier) - 9 standardized classes

IMS Integration

LTE is designed for integration with IMS (IP Multimedia Subsystem):

  • All services over IP
  • VoLTE for voice calling
  • Video calling, RCS

๐Ÿ“‹ Specifications: TS 23.228 (IMS Architecture)


Security

EPS-AKA

Evolved Packet System - Authentication and Key Agreement

  • Mutual authentication of UE and network
  • Key derivation for encryption and integrity

Encryption and Integrity

Layer Encryption Integrity
NAS AES (EEA2), SNOW (EEA1) AES (EIA2), SNOW (EIA1)
AS (RRC) AES, SNOW AES, SNOW
AS (UP) AES, SNOW -

๐Ÿ“‹ Specifications: TS 33.401 (EPS Security Architecture)


Key Procedures

LTE defines several critical procedures for network operation.

Initial Attach

The process when UE connects to network for the first time:

  1. RRC Connection Setup - UE โ†’ eNodeB (random access, RRC)
  2. Attach Request - UE โ†’ MME (via NAS signaling)
  3. Authentication - MME โ†” HSS (EPS-AKA)
  4. Security Mode - MME โ†’ UE (encryption activation)
  5. Location Update - MME โ†’ HSS
  6. Create Session - MME โ†’ S-GW โ†’ P-GW (GTP-C)
  7. Bearer Setup - eNodeB configures radio bearer
  8. Attach Accept - MME โ†’ UE

๐Ÿ“‹ Specifications: TS 23.401 ยง5.3.2 (Attach Procedure)

Handover Types

Type Path Use Case
X2 Handover Source eNB โ†’ Target eNB Intra-LTE, low latency
S1 Handover Source eNB โ†’ MME โ†’ Target eNB Inter-MME, different TAC
Inter-RAT LTE โ†’ 3G/2G Coverage fallback

X2 Handover Steps:

  1. Measurement Report (UE โ†’ Source eNB)
  2. Handover Request (Source โ†’ Target eNB via X2)
  3. Handover Request Ack (Target โ†’ Source)
  4. RRC Connection Reconfiguration (Source โ†’ UE)
  5. Random Access (UE โ†’ Target eNB)
  6. Path Switch Request (Target eNB โ†’ MME)

๐Ÿ“‹ Specifications: TS 36.300 ยง10 (Mobility), TS 23.401 ยง5.5 (Handover)

Paging

Network-initiated procedure to reach idle UE:

  1. MME determines Tracking Area(s) to page
  2. MME โ†’ eNodeBs: Paging message
  3. eNodeBs broadcast on PCH (Paging Channel)
  4. UE monitors PCH in DRX cycles
  5. UE responds with Service Request

๐Ÿ“‹ Specifications: TS 36.304 (Idle Mode Procedures)


Power Saving

LTE includes mechanisms to extend battery life, especially important for IoT devices.

DRX (Discontinuous Reception)

UE periodically wakes up to check for paging:

Parameter Idle Mode Connected Mode
Cycle 320ms - 2.56s 10ms - 2.56s
Purpose Save battery Reduce monitoring
Config by SIB2 RRC Reconfiguration

eDRX (Extended DRX) - Rel-13

Longer sleep cycles for IoT:

Mode Max Cycle Use Case
Idle eDRX 43.69 min Infrequent updates
Connected eDRX 10.24s Bursty traffic

PSM (Power Saving Mode) - Rel-12

Deep sleep between transmissions:

  • UE remains registered but unreachable
  • Timer T3324: Active time after data
  • Timer T3412: Periodic TAU (up to 413 days)
  • Wake up: Mobile Originated only
State Reachable Power Duration
Connected Yes High Active data
Idle Yes (paging) Medium DRX cycles
PSM No Ultra-low Hours to days

๐Ÿ“‹ Specifications: TS 23.682 (MTC Architecture), TS 24.301 (NAS)


Interworking

LTE is designed to work with other access technologies.

LTE โ†” 3G/2G

Mechanism Description Direction
CSFB CS Fallback for voice LTE โ†’ 2G/3G
SRVCC Voice call continuity LTE โ†’ 2G/3G (during call)
PS HO Packet-switched handover LTE โ†” 3G

SRVCC Flow:

  1. VoLTE call active on LTE
  2. Coverage degradation detected
  3. SRVCC triggered by eNodeB
  4. Call transferred to CS domain
  5. Voice continues on 2G/3G

LTE โ†” WiFi

Feature Release Description
ANDSF Rel-8 Access Network Discovery, policy-based selection
MAPCON Rel-10 Multi-Access PDN Connectivity
IFOM Rel-10 IP Flow Mobility between LTE/WiFi
LWA Rel-13 LTE-WiFi Aggregation (combine throughput)
LWIP Rel-13 LTE-WLAN Integration with IPsec

LTE โ†” 5G (Rel-15+)

Mode Description
NSA Option 3 5G NR + LTE EPC (EN-DC)
NSA Option 7 5G NR + 5GC + LTE
SA Standalone 5G NR + 5GC

EN-DC (E-UTRAN NR Dual Connectivity):

  • LTE as anchor (Master Node)
  • NR as secondary (Secondary Node)
  • Split bearer or SCG bearer options
  • Common deployment for initial 5G

๐Ÿ“‹ Specifications: TS 23.402 (Non-3GPP Access), TS 37.340 (Multi-RAT Dual Connectivity)


Rel-9 Extensions

Rel-9 (2009) brought significant LTE extensions:

HeNB - Home eNodeB (Femtocells)

Small base stations for home/enterprise use:

  • Connection via DSL/cable
  • HeNB Gateway for scaling
  • CSG (Closed Subscriber Group) for access control

๐Ÿ“‹ Specifications: TS 22.220, TS 25.467

eMBMS - Evolved Multimedia Broadcast Multicast Service

Efficient content distribution to multiple users:

  • TV broadcasting
  • Software updates
  • Emergency alerts
  • Single Frequency Network (SFN)

๐Ÿ“‹ Specifications: TS 23.246, TS 36.440

Location Services (LCS)

Positioning services for LTE:

  • E-CID (Enhanced Cell ID)
  • OTDOA (Observed Time Difference of Arrival)
  • A-GNSS (Assisted GNSS)

๐Ÿ“‹ Specifications: TS 36.305

VoLTE

Voice over LTE via IMS:

  • HD Voice quality (AMR-WB)
  • Faster call setup than CS
  • Simultaneous voice + data

๐Ÿ“‹ Specifications: TS 23.228, IR.92 (GSMA)

CSFB - Circuit Switched Fallback

Fallback to 2G/3G for voice calls:

  • For operators without IMS/VoLTE
  • Transitional solution

๐Ÿ“‹ Specifications: TS 23.272

SRVCC - Single Radio Voice Call Continuity

Handover of VoLTE call to CS domain:

  • Seamless transition when losing LTE coverage

๐Ÿ“‹ Specifications: TS 23.216


Key 3GPP work items that defined LTE:

Rel-8 Core Work Items

Work Item Title TSG
LTE-SAE Long Term Evolution - System Architecture Evolution RAN, SA
RP-080137 LTE Physical Layer RAN1
RP-080138 LTE Layer 2 and RRC RAN2
SP-080344 EPC Architecture SA2

Rel-9 Work Items

Work Item Title TSG
RP-090360 Home eNodeB (HeNB) RAN
SP-090133 eMBMS Enhancements SA
SP-090139 SRVCC from LTE to 3G/2G SA2
SP-090150 CS Fallback SA2

Study Items

Study Item Title Output
TR 25.913 Requirements for E-UTRA Requirements
TR 25.912 Feasibility study for E-UTRA Feasibility
TR 23.882 3GPP SAE Architecture Architecture
TR 36.913 Requirements for LTE-Advanced Rel-10+

๐Ÿ“‹ Work Items: Browse 3GPP Work Plan for complete list


Comparison with Previous Generations

Feature 2G (GSM) 3G (UMTS) 4G (LTE)
Access TDMA/FDMA WCDMA OFDMA/SC-FDMA
Max DL 384 kbps 42 Mbps (HSPA+) 300 Mbps
Latency ~300ms ~100ms ~10ms
Core CS + PS CS + PS PS only (EPC)
IP Tunnel Tunnel Native

Timeline

  • 2004 - LTE study started in 3GPP
  • 2008 - Rel-8 frozen (first LTE standard)
  • 2009 - Rel-9 frozen (HeNB, eMBMS, VoLTE)
  • 2009 - First commercial LTE network (TeliaSonera, Stockholm)
  • 2010 - LTE expansion worldwide